
Micriµm, Inc.
949 Crestview Circle
Weston, FL 33327

U.S.A.
www.Micrium.com

µC/OS-II
The Real-Time kernel

V2.52
Release Notes

© Copyright 2002, Micriµm, Inc.

All Rights reserved

Phone: +1 954 217 2036 FAX: +1 954 217 2037

 1 of 1

http://www.micrium.com/

V2.52
(2002/01/26)

This release is for the new edition of the book: MicroC/OS-II, The
Real-Time Kernel, 2nd Edition.

V2.52 fixes minor bugs reported in V2.51.

Bug V2.51-003:

In uCOS_II.H, the following code was corrected as follows:

#ifndef OS_FLAG_QUERY_EN
 #error "OS_CFG.H, Missing OS_FLAG_DEL_EN: Include code for OSFlagQuery()"

 needs to be:

#ifndef OS_FLAG_QUERY_EN
#error "OS_CFG.H, Missing OS_FLAG_QUERY_EN: Include code for OSFlagQuery()"

Bug V2.51-002:

In OS_Q.C, the following code was corrected as follows:

The function OSQQuery() contains a BUG in the following code which is towards the
end of the function.

pq = (OS_Q *)pevent->OSEventPtr;
if (pq->OSQEntries > 0) {
 pdata->OSMsg = pq->OSQOut; /* Get next message to return if available */
} else {
 pdata->OSMsg = (void *)0;
}

The CORRECT code is shown below. Note that pq->OSQOut was missing the *.

pq = (OS_Q *)pevent->OSEventPtr;
if (pq->OSQEntries > 0) {
 pdata->OSMsg = *pq->OSQOut; /* Get next message to return if available */
} else {
 pdata->OSMsg = (void *)0;
}

 2 of 2

Bug V2.51-001:

In OS_CPU_A.ASM, the following code was corrected as follows:

The NEW ISRs MUST check to see if OSIntNesting == 1 BEFORE you save the
SP in the current task's OS_TCB. The incorrect 'pseudo' code is:

 OSTCBCur->OSTCBStkPtr = SP /* Save SP onto current task's stack */

 and should be:

 if (OSIntNesting == 1) {
 OSTCBCur->OSTCBStkPtr = SP /* Save SP onto current task's stack */
 }

The reason we need this change is that we don't want to save the current value of SP if
the ISR is for a nested ISR!

V2.52 adds a few minor changes to V2.51.

OS_CORE.C:

I decided to split OSInit() into calls to multiple functions to make the code
cleaner. The new functions should be self-explanatory:

static void OS_InitEventList(void);
static void OS_InitMisc(void);
static void OS_InitRdyList(void);
static void OS_InitTaskIdle(void);
static void OS_InitTaskStat(void);
static void OS_InitTCBList(void);

In OSIntEnter(), I removed the OS_ENTER_CRITICAL() and
OS_EXIT_CRITICAL() macros because it is assumed that OSIntEnter() will
be called with interrupts disabled. Also, I added a check to make sure OSRunning
is set to TRUE.

In OSIntExit(), I added a check to make sure OSRunning is set to TRUE.

In OSTimeTick(), I added a check to make sure OSRunning is set to TRUE
before going through the OS_TCBs.

In OS_TaskStat(), I changed the equation to prevent overflowing the calculation
on very fast CPUs. The equation was written as:

CPU Usage (%) = 100 – 100 * OSIdleCtr / OSIdleCtrMax;

 3 of 3

Because the compiler would first perform the 100 * OSIdleCtr
operation, an OSIdleCtr greater than 42,949,763 would overflow the
calculation and thus report an incorrect result. The equation is now written as:

CPU Usage (%) = 100 – OSIdleCtr * (OSIdleCtrMax / 100);

This allows OSIdleCtr to reach 4,294,967,295 (i.e. 232-1) before the
equation fails. I don’t expect this to happen for a while since OSIdleCtr is
incremented in a loop. The loop contains instructions that would consume a
few CPU cycles each iteration.

OS_MBOX.C:

In OSMboxPend() (OS_MBOX.C), I moved the check for OSIntNesting at the
beginning of the function because you should NEVER call OSMboxPend() from an
ISR.

OS_Q.C:

In OSQPend() (OS_Q.C), I moved the check for OSIntNesting at the beginning
of the function because you should NEVER call OSQPend() from an ISR.

OS_SEM.C:

In OSSemPend() (OS_SEM.C), I moved the check for OSIntNesting at the
beginning of the function because you should NEVER call OSSemPend() from an
ISR.

 4 of 4

V2.51
(2001/06/09)

Two weeks ago, I released V2.05 and today, I found a bug in it (bug
V205-001). I decided to slightly change the numbering system of
releases. Complex releases (like V2.04 to V2.05) will now increase by
0.10 and minor (bug fixes or slight improvements) will now be
increasing by 0.01. This means that V2.51 is now called V2.50 and
with this bug fix, the release is V2.51. The reason this is done is to
allow you to call OSVersion() and get the proper release number. If
I didn’t change the numbering system, I would have had to call the
release with the bug correction V2.06. I was reserving such releases as
major releases.

Bug V2.51-001:
 In the NEW port file, an ISR MUST first check to see if
OSIntNesting == 1 before we save the SP in the current task
OS_TCB. This bug only applies to the NEW algorithm for the port
files and thus does NOT affect previous ports.

See New Algorithm For Ports at the end of the V2.51 notes.

 5 of 5

V2.51 is a big upgrade for µC/OS-II for the following reasons:

1) In this release, I added Event Flags (see OS_FLAG.C). Event flags are
described in AN-1007 which can be downloaded from www.Micrium.com.

2) I received numerous e-mails requesting to reduce the footprint of µC/OS-II to
a minimum. To address this issue, I added a number of #define constants
in OS_CFG.H which allow you to take out most of the features in µC/OS-II
that you might not be using. Specifically, there are #defines to remove the
code for OS???Accept(), OS???Query(), OS???Post(),
OSSchedLock() and OSSchedUnlock() and more.

3) This release comes with NEW ports for the Intel 80x86. These ports have

been revised to REMOVE the dependency on compilers. Specifically, you no
longer need to change the function OSIntCtxSw() in order to adjust the
value of the Stack Pointer (i.e. the SP) register based on compiler options.
The modification to accomplish this feature can ALSO be added to most
processor ports!

WARNING

If you use the NEW port files in your product you WILL need to change ALL
your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

4) All µC/OS-II internal functions are now prefixed with OS_ instead of OS.

This allows you to immediately determine that these functions should NOT be
called by your application. Also, these functions have been moved at the end
of their respective file to get them ‘out-of-the-way’.

5) OS_TaskIdle() now calls OSTaskIdleHook() to allow you to do such

things as STOP the CPU to conserve power when running the idle task. You
will need to add code in OSTaskIdleHook() to execute whatever is
necessary for your CPU to enter it’s power down mode.

 6 of 6

http://www.micrium.com/

6) I added OSMboxPostOpt() and OSQPostOpt(). The new calls allow

you to ‘broadcast’ a message to all tasks waiting on either a message mailbox
or a message queue. In addition, OSQPostOpt() can replace both
OSQPost() AND OSQPostFront(). This was done to further reduce the
amount of code space needed by µC/OS-II. In other words, you can start
using OSQPostOpt() INSTEAD of OSQPost() and OSQPostFront()
and thus save a significant amount of code space.

7) Added #error directives in uCOS_II.H to have the compiler complain
whenever there are missing #defines in your application. This will be
useful to ensure that you have not forgotten any of the NEW #defines
added in V2.51.

8) Previous versions required that you declared a minimum of 2 event control
blocks, 2 message queues, and 2 memory partitions. V2.51 now allows you to
reduce the RAM footprint by allowing you to declare only ONE of each of the
data structures mentioned (and well as only 1 event flag group). In other
words, you can now specify in OS_CFG.H:

#define OS_MAX_EVENTS 1
#define OS_MAX_FLAGS 1
#define OS_MAX_MEM_PART 1
#define OS_MAX_QS 1

9) All conditional compilation is now done as follows:

#if condition_name > 0

instead of:

#if condition_name

The condition name is checked for a non-zero value to enable the code.
This will allow the compiler to complain in case you forget to define
condition_name.

 7 of 7

10) V2.51 correct the four know bugs that were reported in V2.04.

V2.04-001:
The wrong argument was being passed to the call OSTaskCreateHook()
in OSTCBInit(). The bad code was:

OSTaskCreateHook(OSTCBPrioTbl[prio]);

It is now:

OSTaskCreateHook(ptcb);

V2.04-002:
The test in OSMutexPost() to see if the posting task owns the MUTEX
was incorrect. The correct test needed to have && instead of || as follows:

if (OSTCBCur->OSTCBPrio != pip &&
 OSTCBCur->OSTCBPrio != prio) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_NOT_MUTEX_OWNER);

 }

V2.04-003:
The function OSMutexDel() needed to release the priority of the PIP. The
following line was added in OSMutexDel():

OSTCBPrioTbl[pip] = (OS_TCB *)0;

V2.04-004:
The function prototype for OSMutexDel() needed to be added in
uCOS_II.H.

 8 of 8

OS_CFG.H:
Added a number of #define in OS_CFG.H to allow you to reduce the amount
of code and data space. The reason this is done using #defines instead of
simply using a librarian is to prevent having to support a large number of
librarians and also to ensure that data space is also reduced when un-needed
features (i.e. functions) also require data storage.

OS_MAX_FLAGS is used to determine how many event flags your application
will support.

OS_FLAG_EN to Enable (1) or Disable (0) code generation for ALL event flag
services and data storage. Also, OS_FLAG_WAIT_CLR_EN allows you to
Enable (1) or Disable (0) code generation for code to wait for ‘cleared’ event
flags.

The following table summarizes all the other #define constants ADDED in
V2.51. The #defines are set to 1 by default, enabling the code.

#define name in OS_CFG.H ... to enable the function:
OS_FLAG_ACCEPT_EN OSFlagAccept()
OS_FLAG_DEL_EN OSFlagDel()
OS_FLAG_QUERY_EN OSFlagQuery()
OS_MBOX_ACCEPT_EN OSMboxAccept()
OS_MBOX_POST_EN OSMboxPost()
OS_MBOX_POST_OPT_EN OSMboxPostOpt()
OS_MBOX_QUERY_EN OSMBoxQuery()
OS_MEM_QUERY_EN OSMemQuery()
OS_MUTEX_ACCEPT_EN OSMutexAccept()
OS_MUTEX_QUERY_EN OSMutexQuery()
OS_Q_ACCEPT_EN OSQAccept()
OS_Q_POST_EN OSQPost()
OS_Q_POST_FRONT_EN OSQPostFront()
OS_Q_POST_OPT_EN OSQPostOpt()
OS_Q_QUERY_EN OSQQuery()
OS_SEM_ACCEPT_EN OSSemAccept()
OS_SEM_QUERY_EN OSSemQuery()
OS_TASK_QUERY_EN OSTaskQuery()
OS_TIME_DLY_HMSM_EN OSTimeDlyHMSM()
OS_TIME_DLY_RESUME_EN OSTimeDlyResume()
OS_TIME_GET_SET_EN OSTimeGet() and OSTimeSet()
OS_SCHED_LOCK_EN OSSchedLock()and OSSchedUnlock()

Added the typedef OS_FLAGS to allow you to specify the width of flags in an
event flag group.

 9 of 9

IMPORTANT

You WILL need to add ALL of the above #define in your OS_CFG.H
files because uCOS_II.H contains error checks that will make your compiler
complain if you don’t include these #defines. The easiest way to
accomplish this is to simply copy one of the OS_CFG.H files supplied in this
release and paste it into your application and enable/disable the features you
need.

OS_CORE.C:
Added call to OS_FlagInit() in OSInit() to support event flags.

Added call to OSTaskIdleHook() in OS_TaskIdle() to allow you to do
such things as STOP the CPU to conserve power when running the idle task. You
will need to add code in OSTaskIdleHook() to execute whatever is necessary
for your CPU to enter it’s power down mode.

Added conditional compilation so that when OS_SCHED_LOCK_EN is set to 1 in
OS_CFG.H, the code for OSSchedLock() and OSSchedUnlock() will be
produced.

Corrected a bug in OS_TCBInit(). OSTaskCreateHook() was being
OSTCBPrioTbl[prio] passed INSTEAD of ptcb.
OSTCBPrioTbl[prio] didn’t contain a valid pointer when
OSTaskCreateHook() was being called.

WARNING
If you use the NEW port files in your product you will need to change ALL
your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

 10 of 10

OS_FLAG.C:
 Added event flags to µC/OS-II, see AN-1007.

OS_MBOX.C:

Added conditional compilation so that when OS_MBOX_ACCEPT_EN is set to 1
in OS_CFG.H, the code for OSMboxAccept() will be produced.

Added conditional compilation so that when OS_MBOX_POST_EN is set to 1 in
OS_CFG.H, the code for OSMboxPost() will be produced. This allows you to
reduce the amount of code space. The reason this conditional compilation has
been added is because I added the more powerful function OSMboxPostOpt()
which can emulate OSMboxPost() and also allows you to broadcast messages
to all tasks waiting on the mailbox.

Added OSMboxPostOpt() which can emulate OSMboxPost() and also
allows you to broadcast messages to all tasks waiting on the mailbox. The
#define constant OS_MBOX_POST_OPT_EN found in OS_CFG.H allows you
to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_MBOX_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSMboxQuery() will be produced. This allows you
to reduce the amount of code space.

OS_MEM.C:
Added code to test the argument addr to make sure it’s not a NULL pointer in
OSMemCreate().

Added code to test the argument pmem to make sure it’s not a NULL pointer in
OSMemGet().

Added code to test the argument pmem and pblk to make sure they are not NULL
pointers in OSMemGet().

Added conditional compilation so that when OS_MEM_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSMemQuery() will be produced. This allows you to
reduce the amount of code space.

Added code to test the argument pmem and pdata to make sure they are not
NULL pointers in OSMemQuery().

 11 of 11

Added conditional compilation to allow you to declare storage for a single
memory partition. In other words, you are now allowed to set
OS_MAX_MEM_PART to 1 in OS_CFG.H.

OS_MUTEX.C:

Added conditional compilation so that when OS_MUTEX_ACCEPT_EN is set to 1
in OS_CFG.H, the code for OSMutexAccept() will be produced. This allows
you to reduce the amount of code space.

Added conditional compilation so that when OS_MUTEX_QUERY_EN is set to 1
in OS_CFG.H, the code for OSMutexQuery() will be produced. This allows
you to reduce the amount of code space.

Fixed a bug in OSMutexDel(). The entry in OSTCBPrioTbl[] was not
being freed at the priority inheritance priority. This has been corrected.

Fixed a bug in OSMutexPost(). The current task priority was being tested for
&& instead of ||. This has been corrected.

OS_Q.C:

Added conditional compilation so that when OS_Q_ACCEPT_EN is set to 1 in
OS_CFG.H, the code for OSQAccept() will be produced. This allows you to
reduce the amount of code space.

Added conditional compilation so that when OS_Q_FLUSH_EN is set to 1 in
OS_CFG.H, the code for OSFlushAccept() will be produced. This allows
you to reduce the amount of code space.

Added conditional compilation so that when OS_Q_POST_EN is set to 1 in
OS_CFG.H, the code for OSQPost() will be produced. This allows you to
reduce the amount of code space. The reason this conditional compilation has
been added is because I added the more powerful function OSQPostOpt()
which can emulate both OSQPost() and OSQPostFront() also allows you
to broadcast messages to all tasks waiting on the queue.

Added conditional compilation so that when OS_Q_POST_FRONT_EN is set to 1
in OS_CFG.H, the code for OSQPostFront() will be produced. This allows
you to reduce the amount of code space. The reason this conditional compilation
has been added is because I added the more powerful function OSQPostOpt().

Added OSQPostOpt() which can emulate both OSQPost() and
OSQPostFront() and also allows you to broadcast messages to all tasks

 12 of 12

waiting on the queue. The #define constant OS_Q_POST_OPT_EN found in
OS_CFG.H allows you to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_Q_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSQQuery() will be produced. This allows you to
reduce the amount of code space.

Added conditional compilation to allow you to declare storage for a single
message queue. In other words, you are now allowed to set OS_MAX_QS to 1 in
OS_CFG.H.

OS_SEM.C:

Added conditional compilation so that when OS_SEM_ACCEPT_EN is set to 1 in
OS_CFG.H, the code for OSSemAccept() will be produced.

Added conditional compilation so that when OS_SEM_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSSemQuery() will be produced. This allows you to
reduce the amount of code space.

OS_TASK.C:

Added call to OS_FlagUnlink() in OSTaskDel() to support event flags.
Note that this code is conditionally compiled in when OS_FLAG_EN is set to 1.

Added conditional compilation so that when OS_TASK_QUERY_EN is set to 1 in
OS_CFG.H, the code for OSTaskQuery() will be produced. This allows you
to reduce the amount of code space.

OS_TIME.C:

Added conditional compilation so that when OS_TIME_DLY_HMSM_EN is set to
1 in OS_CFG.H, the code for OSTimeDlyHMSM() will be produced. This
allows you to reduce the amount of code space in case you chose not to use this
function.

Added conditional compilation so that when OS_TIME_DLY_RESUME_EN is set
to 1 in OS_CFG.H, the code for OSTimeDlyResume() will be produced. This
allows you to reduce the amount of code space in case you chose not to use this
function.

Added conditional compilation so that when OS_TIME_GET_SET_EN is set to 1
in OS_CFG.H, the code for OSTimeGet() and OSTimeSet() will be
produced. This allows you to reduce the amount of code space in case you chose
not to use this function.

 13 of 13

uCOS_II.C:

Added OS_FLAG.C.

uCOS_II.H:

Changed OS_VERSION to 205.

Added constants, data types and function prototypes to support Event Flags.

Added OS_POST_OPT_??? which are the options to specify in
OSMboxPostOpt() and OSQPostOpt() calls.

The global variable OSTime is not allocated when OS_TIME_GET_SET_EN is
set to 0. This reduces the RAM footprint by 4 bytes.

Added checks at the end of uCOS_II.H to ensure that you don’t forget any
#defines that are assumed to be declared in OS_CFG.H. If you do forget any
of the required #defines in OS_CFG.H, the compiler will issue an error
message. In other words, your compiler should complain about the fact that you
didn’t specify all the necessary #defines.

 14 of 14

New Algorithm For Ports:

V2.51 comes with a new algorithm which prevents from having to adjust the stack
pointer in OSIntCtxSw() and thus making the port independent of compilers
and compiler options.

You should still be able to use your OLD (V2.04 and earlier) ports without
change (except you’ll need to add a few HOOK functions as described in the next
section.

This new algorithm affects ALL your ISRs and thus you MUST play close
attention to the following changes.

The OLD pseudo code for OSIntCtxSw() was:

OSIntCtxSw(): /* OLD */
 Adjust the SP to remove call to OSIntExit(),
 locals in OSIntExit() and the call to OSIntCtxSw();
 Save the stack pointer to OSTCBCur->OSTCBStkPtr;
 Call OSTaskSwHook()
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 CPU Stack Pointer = OSTCBHighRdy->OSTCBStkPtr;
 POP all the CPU registers from the new task’s stack;
 Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

OSIntCtxSw(): /* NEW */
 Call OSTaskSwHook()
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 CPU Stack Pointer = OSTCBHighRdy->OSTCBStkPtr;
 POP all the CPU registers from the new task’s stack;
 Execute a return from interrupt instruction;

You should notice that you NO LONGER need to adjust the SP. The reason this
is possible is because, the SP of the task that can be switched out now NEEDS to
be saved in ALL the ISRs as described below.

 15 of 15

You MUST now change ALL your ISRs. The OLD pseudo code for your ISRs
was:

YourISR(): /* OLD */
 Save processor registers onto current task’s stack;
 Call OSIntEnter() or increment OSIntNesting;
 .
 YOUR ISR Handler code;
 .
 Call OSIntExit();
 Restore processor registers from current task’s stack;
 Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

YourISR(): /* NEW */
 Save processor registers onto current task’s stack;
 Call OSIntEnter() or incr
 if (OSIntNesting == 1) {

ement OSIntNesting;

 Save the CPU’s Stack Pointer onto current task’s stack;
 }
 .
 YOUR ISR Handler code;
 .
 Call OSIntExit();
 Restore processor registers from current task’s stack;
 Execute a return from interrupt instruction;

 16 of 16

Upgrading from V2.04 (or earlier) to V2.51:

You should be able to use processor ports made for V2.04 or earlier. Because I
added new features, you will most likely need to change the following files:

1) OS_CFG.H:

You will need to ADD all the new #define constants and also, declare the
data type OS_FLAGS. As I mentioned previously, you can simply copy one
of the OS_CFG.H files supplied with this release and paste it into your own
and make the appropriate selection of features you need in your product.

2) OS_CPU_C.C:

You will need to ADD an empty function for OSTaskIdleHook() as
follows unless you actually want to add your own code to the function:

void OSTaskIdleHook (void)
{
}

3) OS_CPU_A.ASM:

If you want to use the new ALGORITHM described in the previous section,
you will need to change OSIntCtxSw(), OSTickISR() AND all your
ISRs. You should be able to use your OLD ports without change if you don’t
want to use the new algorithm.

4) OS_CPU.H:

No change.

5) Your ISRs:

If you want to use the new ALGORITHM described in the previous section,
you will need to change ALL your ISRs. You should be able to use your
OLD ports without change if you don’t want to use the new algorithm.

 17 of 17

V2.04
(2000/10/31)

MISCELLANEOUS:

Removed revision history from all the source code. The revision history is now
described in this document. This was done to reduce the amount of ‘clutter’ from
the source files.

Added OS_ARG_CHK_EN to enable (when 1) MicroC/OS-II argument checking.
By setting this configuration constant to 0, you would be able to reduce code size
and improve on performance by not checking the range of the arguments passed
to MicroC/OS-II functions. However, it is recommended to leave argument
checking enabled.

Added Mutual Exclusion Semaphores (OS_MUTEX.C) that are described in
AN1002.PDF.

Added support for OS_CRITICAL_METHOD #3 that allows the status register of
the CPU to be saved in a local variable. The status register is assumed to be saved
by OS_ENTER_CRITICAL() in a local variable called cpu_sr of type
OS_CPU_SR. The data type OS_CPU_SR is assumed to be declared in
OS_CPU.H. The status register (and thus the state of the interrupt disable flag) is
assumed to be restored by OS_EXIT_CRITICAL() from the contents of this
variable. The macros would be declared as follows:

 #define OS_ENTER_CRITICAL() (cpu_sr = OSCPUSaveSR())
 #define OS_EXIT_CRITICAL() (OSCPURestoreSR(cpu_sr))

Note that the functions OSCPUSaveSR() and OSCPURestoreSR()
would be written in assembly language and would typically be found in
OS_CPU_A.ASM (or equivalent).

The check for OSIntNesting in all µC/OS-II services is now being done
without disabling interrupts in order to reduce interrupt latency. In other words,
the following code:

 OS_ENTER_CRITICAL();
 if (OSIntNesting > 0) {
 .
 .
 OS_EXIT_CRITICAL();
 }

Has been replaced by:

 18 of 18

 if (OSIntNesting > 0) {
 .
 .
 }

The reason is that ALL currently known processors will treat this byte size
variable (OSIntNesting) indivisibly.

OS_CORE.C:
Moved all local variables to uCOS_II.H making them all global variables. This
helps when testing.

Calls to OSTaskCreate() and OSTaskCreateExt() in OSInit() now
return (void) to indicate that the return value is not being used. This prevents
warnings from LINT.

Although not critical, OSInit() was optimized for speed.

Added OSInitHookBegin() at the beginning of OSInit() to allow for a
processor port to provide additional ‘OS” specific initialization which would be
done BEFORE MicroC/OS-II is initialized.

Added OSInitHookEnd() at the end of OSInit() to allow for a processor
port to provide additional ‘OS” specific initialization which would be done
AFTER MicroC/OS-II is initialized.

Initialized .OSEventType to OS_EVENT_TYPE_UNUSED in OSInit().

Added boundary check for OSIntNesting in OSIntEnter() to prevent
wrapping back to 0 if OSIntNesting is already at 255.

Added boundary check on OSIntNesting in OSIntExit() to prevent
wrapping back to 255 if OSIntNesting is already at 0.

Changed the test for rescheduling in OSIntExit() and OSSched() from:

if ((--OSIntNesting | OSLockNesting) == 0) {

to

if ((OSIntNesting == 0) && (OSLockNesting == 0)) {

for sake of clarity.

 19 of 19

Removed unreachable code in OSTaskStat() for CPU usage > 100%.

Added call to OSTCBInitHook() in OSTCBInit() to allow user (or port)
specific TCB extension initialization.

Moved the increment of OSTimeTick() immediately after calling
OSTimeTickHook().

Made OSTime volatile.

OS_MBOX.C:

Removed checking of pevent from the critical section to reduce interrupt
latency.

Removed checking of msg from the critical section to reduce interrupt latency.

Added OSMBoxDel() to delete a message mailbox and free up its Event Control
Block. All tasks pending on the mailbox will be readied. This feature is enabled
by setting OS_MBOX_DEL_EN to 1.

Changed test:

if (pevent->OSEventGrp)
to

if (pevent->OSEventGrp != 0x00).

OS_MEM.C:

Moved the local variables OSMemFreeList and OSMemTbl[] to
uCOS_II.H.

Added code to initialize all the fields of the last node in OSMemInit().

OS_MUTEX.C:

Added services to support Mutual Exclusion Semaphores that are used to reduce
priority inversions.

OS_Q.C:

Removed checking of pevent from the critical section to reduce interrupt
latency.

 20 of 20

Removed checking of msg from the critical section to reduce interrupt latency.

Added OSQDel() to delete a message queue and free up its Event Control
Block. All tasks pending on the queue will be readied. This feature is enabled by
setting OS_Q_DEL_EN to 1.

Changed test:

if (pevent->OSEventGrp)
to

if (pevent->OSEventGrp != 0x00).

Moved the definition of the data type OS_Q to uCOS_II.H.

OS_SEM.C:

Removed checking of pevent from the critical section to reduce interrupt
latency.

Added OSSemDel() to delete a semaphore and free up its Event Control Block.
All tasks pending on the semaphore will be readied. This feature is enabled by
setting OS_SEM_DEL_EN to 1.

Changed test:

if (pevent->OSEventGrp)
to

if (pevent->OSEventGrp != 0x00).

OS_TASK.C:

Task stack is now cleared in OSTaskCreateExt() when either options
OS_TASK_OPT_STK_CHK or OS_TASK_OPT_STK_CLR is set. The new code
is:

if (((opt & OS_TASK_OPT_STK_CHK) != 0x0000) ||
 ((opt & OS_TASK_OPT_STK_CLR) != 0x0000)) {

OSTaskCreateHook() has been removed from OSTaskCreate() and
OSTaskCreateExt() and moved to OSTCBInit() so that the hook is called
BEFORE the task is made ready-to-run. This avoids having the possibility of
readying the task before calling the hook function.

If you don’t specify any Mailboxes (OS_MBOX == 0), Queues (OS_Q == 0),
Semaphores (OS_SEM == 0) or Mutexes (OS_MUTEX == 0) in OS_CFG.H
in order to create a minimal system, OSTaskChangePrio() and
OSTaskDel() will no longer reference OSTCBEventPtr.

 21 of 21

OS_TIME.C:

Added cast to INT16U for all references of tick in OSTimeDlyHMSM().

uCOS_II.C:

Added OS_MUTEX.C.

uCOS_II.H:

Changed OS_VERSION to 204.

Moved all ‘local’ variables from OS_MEM.C, OS_Q.C and OS_TASKS.C to
simplify debugging and unit testing.

Added constants, data types and function prototypes to support Mutual Exclusion
Semaphores.

 22 of 22

This page is intentionally blank.

 23 of 23

V2.03
(1999/09/09)

MISCELLANEOUS:

The distribution of µC/OS-II now assumes the Borland C/C++ V4.51 or higher
compiler instead of the V3.1 compiler. The code should, however, compile and
run using V3.1.

This release contains a slightly different directory structure. The name of the
compiler is added to the directory structure in order to support multiple compilers
and have the same directory structure for all of these.

\SOFTWARE\uCOS-II\SOURCE
 Contains the source files for the processor independent code of uC/OS-II.

\SOFTWARE\uCOS-II\Ix86L\BC45
Contains the source files for the 80x86 real mode, large model port. The
port now contains the function OSTaskStkInit_FPE_x86() which
needs to be called before you create a task that will use Borland C/C++'s
floating-point emulation (FPE) library. See application note AN-1001
found on www.Micrium.com.

\SOFTWARE\uCOS-II\Ix86L-FP\BC45
Contains the source files for the 80x86 real mode, large model port. This
port also contains hardware floating-point support. In other words,
µC/OS-II performs a context switch on the floating-point registers as well
as the integer registers. This port was not present on the original
distribution of µC/OS-II (i.e. V2.00).

\SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #1

\SOFTWARE\uCOS-II\EX1_x86L\BC45\TEST
Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #1. To build the executable for example #1,
simply type MAKETEST at the DOS prompt. You may have to change
TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E:\BC45 directory. To execute example
#1, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX2_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #2

\SOFTWARE\uCOS-II\EX2_x86L\BC45\TEST

 24 of 24

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #2. To build the executable for example
#2, simply type MAKETEST at the DOS prompt. You may have to
change TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is
located. My compiler was located in the E:\BC45 directory. To execute
example #2, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX3_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #3

\SOFTWARE\uCOS-II\EX3_x86L\BC45\TEST
Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #3. To build the executable for example #3,
simply type MAKETEST at the DOS prompt. You may have to change
TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E:\BC45 directory.

To execute example #3, type TEST at the DOS prompt.

\SOFTWARE\uCOS-II\EX4_x86L.FP\BC45\SOURCE
Contains the source code for the sample code of Example #4

\SOFTWARE\uCOS-II\EX4_x86L\BC45\TEST
Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #4. Example #4 demonstrate the use of
Ix86L-FP, the port that saves/restores the 80x86's floating-point
registers during a context switch. This of course applies for 80x86
processors having a floating-point unit. You may have to change
TEST.MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E:\BC45 directory. To execute example
#1, type TEST at the DOS prompt.

\SOFTWARE\BLOCKS\PC\BC45
Contains the source files for the PC services used to display characters on
the screen, read the keyboard etc.

 25 of 25

EXAMPLES:

Example #1 (V2.00)

TEST.C was previously called EX1L.C

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

The floating-point code in TaskStart() has been removed so that the
task only executes integer arithmetic instructions.

Example #2 (V2.00)

TEST.C was previously called EX2L.C
Added TaskStartCreateTasks() to create all the application tasks.
TaskStart() now uses the Borland C/C++ Floating-Point Emulation
library and thus, the stack needs to be 'preconditioned' by calling the
function OSTaskStkInit_FPE_x86() (see www.Micrium.com,
AN-1001).

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

Example #3 (V2.00)

TEST.C was previously called EX3L.C

Added TaskStartCreateTasks() to create all the application tasks.

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

Floating-point operations have been replaced with integer operations.

Example #4 (V2.00)

Example #4 is a new example using hardware assisted floating-point.

TEST.C was previously called EX4L.C

PC_DispClrLine() has been changed to PC_DispClrRow().

TaskClk() now calls PC_GetDateTime().

 26 of 26

PC Services (V2.00)

PC.C:
Functions are now listed in alphabetical order in the file.

PC_ElapsedStart() and PC_ElapsedStop() now protect the
critical section of code that accesses the timer ports.

PC_VectGet() and PC_VectSet() no longer depend on the Borland
C/C++ functions getvect() and setvect(). This should make these
functions more portable.

Changed the name of PC_DispClrLine() to PC_DispClrRow().

Added function PC_DispClrCol().

The following function now cast MK_FP() to (INT8U far *):
 PC_DispChar()

PC_DispClrLine()
PC_DispClrScr()
PC_DispStr()

PC_ElapsedStop(), cast inp() to INT8U.

PC_GetKey(), cast getch() to INT16S.

PC.H:
Function prototypes are now listed in alphabetical order.

Added prototype for PC_DispClrCol().

 27 of 27

OS_CORE.C:
Changed the return type of OSEventTaskRdy() from void to INT8U to
return the priority of the task readied even though the current version of
MicroC/OS-II doesn't make use of this feature. This change was done to support
future versions.

Moved OSDummy() from OS_TASK.C to OS_CORE.C to be able to call
OSDummy() from other services.

OS_MBOX.C:

Added check in OSMboxPost() to see if the caller is attempting to post a NULL
pointer. By definition, you should NOT send a NULL pointer message. If you
attempt to post a NULL pointer, OSMboxPost() will return
OS_ERR_POST_NULL_PTR.

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:
 OSMboxPost()
 OSMboxQuery()
Note that OSMboxAccept() will return a NULL pointer because it doesn't
provide the capability of returning an error code.

OSMboxPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL
pointer.

OS_Q.C:
Added check in OSQPost() and OSQPostFront() to see if the caller is
attempting to post a NULL pointer. By definition, you should NOT send a NULL
pointer message. If you attempt to post a NULL pointer, OSQPost() and
OSQPostFront() will return OS_ERR_POST_NULL_PTR.

 28 of 28

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:
 OSQFlush()
 OSQPost()
 OSQPostFront()
 OSQQuery()
Note that OSQAccept() simply returns a NULL pointer because it doesn't
provide the capability of returning an error code.

OSQPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL
pointer.

OS_SEM.C:

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:
 OSSemPost()
 OSSemQuery()
Note that OSSemAccept() returns 0 because it doesn't provide the capability to
return an error code.

OSSemPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL
pointer.

OS_TASK.C:

Moved OSDummy() to OS_CORE.C

uCOS_II.H:

Added error code OS_ERR_POST_NULL_PTR (value is 3).

Changed the return type of OSEventTaskRdy() from void to INT8U to
return the priority of the task readied.

Added function prototype for OSDummy().

Added error code OS_ERR_PEVENT_NULL (value is 4)

 29 of 29

V2.02
(1999/07/18)

OS_MBOX.C:

Removed last else statement in OSMboxPend() because the code is
unreachable.

OS_Q.C:
Removed last else statement in OSQPend() because the code is unreachable.

OS_TASK.C:
OSTaskCtr is always included.

uCOS_II.C:
Added check for definition of macro OS_ISR_PROTO_EXT so that the prototype
of OSCtxSw() and OSTickISR() can be changed based on compiler specific
requirements. To use a different prototype, simply add:

#define OS_ISR_PROTO_EXT
in OS_CPU.H of the port and then define the new prototype format for
OSCtxSw() and OSTickISR() in OS_CPU.H of the port.

OSTaskCtr is always included. Previously it was conditionally compiled only
if OS_TASK_CREATE_EN, OS_TASK_CREATE_EXT_EN or
OS_TASK_DEL_EN was set to 1. It turns out that you MUST always have either
OS_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN set to 1 anyway!

 30 of 30

This page is intentionally blank.

 31 of 31

V2.01
(1999/07/15)

OS_CORE.C:

Changed for loop inside OSEventWaitListInit() to inline code for
speed. This eliminates the loop overhead.

The argument stk_size in OSTCBInit() has been changed from INT16U to
INT32U to accommodate large stacks.

OS_MBOX.C:
Changed 'for' loop inside 'OSMboxQuery()' to inline code for speed. This
eliminates the loop overhead.

OS_Q.C:
Added typecast to avoid compiler error/warning:
 pq = (OS_Q *)pevent->OSEventPtr;
 ^^^^^^^^
Affected functions:
 OSQAccept()
 OSQFlush()
 OSQPend()
 OSQPost()
 OSQPostFront()

Changed for loop inside OSQQuery() to inline code for speed. This
eliminates the loop overhead.

Added msg = (void *)0; in if (OSIntNesting > 0) case.

OS_SEM.C:
Second if statement in function OSSemPend() needed to be and if/else
clause.

 32 of 32

 33 of 33

OS_TASK.C:

Stack filling is now done using the ANSI C function memset() for speed.

Copying of the OS_TCB structure in OSTaskQuery() is now done using
memcpy() for speed.

Function OSTaskStkChk() now cast the value 0 to (OS_STK)0 in while
loops.

uCOS_II.C:
Changed the comment for OSTCBStkSize in the OS_TCB structure to indicate
that the size is in number of elements and not bytes.

The argument stk_size in OSTCBInit() has been changed from INT16U to
INT32U to accommodate large stacks.

	© Copyright 2002, Micriµm, Inc.

