
Micriµm, Inc.
© Copyright 2002, Micriµm, Inc.

All Rights reserved

New Features and Services
since

µC/OS-II V2.00

Jean J. Labrosse
Jean.Labrosse@Micrium.com

www.Micrium.com

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/

 New since µC/OS-II V2.00

Introduction
This document describes all the features and services added to µC/OS-II since the introduction
of the hard cover book MicroC/OS-II, The Real-Time Kernel, ISBN 0-87930-543-6. The
software provided with the book was version 2.00 or V2.04. The version number of the change
is shown when appropriate.

New #define Constants and Macros
OS_ARG_CHK_EN (OS_CFG.H, V2.04)

This constant is used to specify whether argument checking will be performed at the beginning of most of
µC/OS-II services. You should always choose to turn this feature on (when set to 1) unless you need to
get the best performance possible out of µC/OS-II or, you need to reduce code size.

OS_CRITICAL_METHOD #3 (OS_CPU.H, V2.04)

This constant specifies the method used to disable and enable interrupts during critical sections of code.
Prior to V2.04, OS_CRITICAL_METHOD could be set to either 1 or 2. In V2.04, I added a local variable
(i.e. cpu_sr) in most function calls to save the processor status register which generally holds the state of
the interrupt disable flag(s). You would then declare the two critical section macros as follows:

 #define OS_ENTER_CRITICAL() (cpu_sr = OSCPUSaveSR())
 #define OS_EXIT_CRITICAL() (OSCPURestoreSR(cpu_sr))

Note that the functions OSCPUSaveSR() and OSCPURestoreSR() would be written in
assembly language and would typically be found in OS_CPU_A.ASM (or equivalent).

OS_FLAG_EN (OS_CFG.H, V2.51)
This constant is used to specify whether you will enable (when 1) code generation for the event flags.

OS_FLAG_WAIT_CLR_EN (OS_CFG.H, V2.51)
This constant is used to enable code generation (when 1) to allow to wait on cleared event flags.

OS_ISR_PROTO_EXT (OS_CPU.H, V2.02)
If you place this constant is OS_CPU.H, you can redefine the function prototypes for OSCtxSw() and
OSTickISR(). In other words, if you add the following definition, YOU will have to declare the
prototype for OSCtxSw() and OSTickISR().

#define OS_ISR_PROTO_EXT 1

OS_MAX_FLAGS (OS_CFG.H, V2.51)
This constant is used to determine how many event flags your application will support.

OS_MUTEX_EN (OS_CFG.H, V2.04)

This constant is used to specify whether you will enable (when 1) code generation for mutual exclusion
semaphores.

2

New since µC/OS-II V2.00

The following table summarizes some of the new #define constants in OS_CFG.H which
were all added in V2.51.

#define name in OS_CFG.H ... to enable the function:

OS_FLAG_ACCEPT_EN OSFlagAccept()
OS_FLAG_DEL_EN OSFlagDel()
OS_FLAG_QUERY_EN OSFlagQuery()

OS_MBOX_ACCEPT_EN OSMboxAccept()
OS_MBOX_DEL_EN OSMboxDel()
OS_MBOX_POST_EN OSMboxPost()
OS_MBOX_POST_OPT_EN OSMboxPostOpt()
OS_MBOX_QUERY_EN OSMBoxQuery()

OS_MEM_QUERY_EN OSMemQuery()

OS_MUTEX_ACCEPT_EN OSMutexAccept()
OS_MUTEX_DEL_EN OSMutexDel()
OS_MUTEX_QUERY_EN OSMutexQuery()

OS_Q_ACCEPT_EN OSQAccept()
OS_Q_DEL_EN OSQDel()
OS_Q_FLUSH_EN OSQFlush()
OS_Q_POST_EN OSQPost()
OS_Q_POST_FRONT_EN OSQPostFront()
OS_Q_POST_OPT_EN OSQPostOpt()
OS_Q_QUERY_EN OSQQuery()

OS_SEM_ACCEPT_EN OSSemAccept()
OS_SEM_DEL_EN OSSemDel()
OS_SEM_QUERY_EN OSSemQuery()

OS_TASK_QUERY_EN OSTaskQuery()

OS_TIME_DLY_HMSM_EN OSTimeDlyHMSM()
OS_TIME_DLY_RESUME_EN OSTimeDlyResume()
OS_TIME_GET_SET_EN OSTimeGet() and OSTimeSet()

OS_SCHED_LOCK_EN OSSchedLock()and OSSchedUnlock()

 3

 New since µC/OS-II V2.00

New Data Types
OS_CPU_SR (OS_CPU.H, V2.04)

This data type is used to specify the size of the CPU status register which is used in conjunction with
OS_CRITICAL_METHOD #3 (see above). For example, if the CPU status register is 16-bit wide then you
would typedef accordingly.

OS_FLAGS (OS_CFG.H, V2.51)

This data type determines how many bits an event flag group will have. You can thus typedef this data
type to either INT8U, INT16U or INT32U to give event flags either 8, 16 or 32 bits, respectively.

New Hook Functions
void OSInitHookBegin(void) (OS_CPU.C, V2.04)

This function is called at the very beginning of OSInit() to allow for port specific initialization
BEFORE µC/OS-II gets initialized.

void OSInitHookEnd(void) (OS_CPU.C, V2.04)
This function is called at the end of OSInit() to allow for port specific initialization AFTER µC/OS-II
gets initialized.

void OSTCBInitHook(OS_TCB *ptcb) (OS_CPU.C, V2.04)
This function is called by OSTCBInit() during initialization of the TCB assigned to a newly created
task. It allows port specific initialization of the TCB.

void OSTaskIdleHook(void) (OS_CPU.C, V2.51)
This function is called by OSTaskIdle(). This allows you to STOP the CPU and thus reduce power
consumption while there is nothing to do.

New Functions
This section describes the new functions (i.e. services) that YOUR application can call.

4

New since µC/OS-II V2.00

OSFlagAccept()
OS_FLAGS OSFlagAccept(OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT8U *err);

File Called from Code enabled by Version

OS_FLAG.C Task OS_FLAG_EN &&
OS_FLAG_ACCEPT_EN

V2.51

OSFlagAccept() allows you to check the status of a combination of bits to be either set or cleared in an event
flag group. Your application can check for ANY bit to be set/cleared or ALL bits to be set/cleared. This function
behaves exactly as OSFlagPend() except that the caller will NOT block if the desired event flags are not present.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

flags is a bit pattern indicating which bit(s) (i.e. flags) you wish to check. The bits you want are specified by
setting the corresponding bits in flags.

wait_type specifies whether you want ALL bits to be set/cleared or ANY of the bits to be set/cleared. You can
specify the following argument:

OS_FLAG_WAIT_CLR_ALL You will check ALL bits in 'flags' to be clear (0)
OS_FLAG_WAIT_CLR_ANY You will check ANY bit in 'flags' to be clear (0)
OS_FLAG_WAIT_SET_ALL You will check ALL bits in 'flags' to be set (1)
OS_FLAG_WAIT_SET_ANY You will check ANY bit in 'flags' to be set (1)

You can add OS_FLAG_CONSUME if you want the event flag(s) to be ‘consumed’ by the call.
For example, to wait for ANY flag in a group and then clear the flags that are present, set
wait_type to:
 OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err a pointer to an error code and can be:

OS_NO_ERR No error
OS_ERR_EVENT_TYPE You are not pointing to an event flag group
OS_FLAG_ERR_WAIT_TYPE You didn't specify a proper 'wait_type' argument.
OS_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag handle.
OS_FLAG_ERR_NOT_RDY The desired flags you are waiting for are not available.

Returned Value

The state of the flags in the event flag group.

Notes/Warnings

1) The event flag group must be created before it is used.
2) This function does NOT block if the desired flags are not present.

 5

 New since µC/OS-II V2.00

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAGS value;

 pdata = pdata;
 for (;;) {
 value = OSFlagAccept(EngineStatus, ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK, OS_FLAG_WAIT_SET_ALL,
&err);
 switch (err) {
 case OS_NO_ERR:
 /* Desired flags are available */
 break;

 case OS_FLAG_ERR_NOT_RDY:
 /* The desired flags are NOT available */
 break;
 }
 .
 .
 }
}

6

New since µC/OS-II V2.00

OSFlagCreate()
OS_FLAG_GRP *OSFlagCreate(OS_FLAGS flags, INT8U *err);

File Called from Code enabled by Version

OS_FLAG.C Task or startup code OS_FLAG_EN V2.51

OSFlagCreate() is used to create and initialize an event flag group.

Arguments

flags contains the initial value to store in the event flag group.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the event flag group was created.
OS_ERR_CREATE_ISR if you attempted to create an event flag group from an ISR.
OS_FLAG_GRP_DEPLETED if there are no more event flag groups available. You will need to

increase the value of OS_MAX_FLAGS in OS_CFG.H.

Returned Value

A pointer to the event flag group if a free one is available. If no event flag group is available, OSFlagCreate()
will return a NULL pointer.

Notes/Warnings

1) Event flag groups must be created by this function before they can be used by the other services.

Example

OS_FLAG_GRP *EngineStatus;

void main (void)
{
 INT8U err;

 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 EngineStatus = OSFlagCreate(0x00, &err); /* Create an event flag group containing the engine’s status */
 .
 .
 OSStart(); /* Start Multitasking */
}

 7

 New since µC/OS-II V2.00

OSFlagDel()
OS_FLAG_GRP *OSFlagDel(OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err);

File Called from Code enabled by Version

OS_FLAG.C Task OS_FLAG_EN and
OS_FLAG_DEL_EN

V2.51

OSFlagDel() is used to delete an event flag group. This is a dangerous function to use because multiple tasks
could be relying on the presence of the event flag group. You should always use this function with great care.
Generally speaking, before you would delete an event flag group, you would first delete all the tasks that access the
event flag group.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

opt specifies whether you want to delete the event flag group only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the event flag group regardless of whether tasks are
pending or not (OS_DEL_ALWAYS). In this case, all pending task will be readied.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the event flag group was deleted.
OS_ERR_DEL_ISR if you attempted to delete an event flag group from an ISR.
OS_ERR_EVENT_TYPE if pgrp is not pointing to an event flag group.
OS_ERR_INVALID_OPT if you didn’t specify one of the two options mentioned above.
OS_ERR_TASK_WAITING if one or more task were waiting on the event flag group and and you

specified OS_DEL_NO_PEND.
OS_FLAG_INVALID_PGRP if you passed a NULL pointer in pgrp.

Returned Value

A NULL pointer if the event flag group is deleted or pgrp if the event flag group was not deleted. In the latter case,
you would need to examine the error code to determine the reason.

Notes/Warnings

1) You should use this call with care because other tasks may expect the presence of the event flag group.
2) This call can potentially disable interrupts for a long time. The interrupt disable time is directly proportional to

the number of tasks waiting on the event flag group.

8

New since µC/OS-II V2.00

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAG_GRP *pgrp;

 pdata = pdata;
 while (1) {
 .
 .
 pgrp = OSFlagDel(EngineStatusFlags, OS_DEL_ALWAYS, &err);
 if (pgrp == (OS_FLAG_GRP *)0) {
 /* The event flag group was deleted */
 }
 .
 .
 }
}

 9

 New since µC/OS-II V2.00

OSFlagPend()
OS_FLAGS OSFlagPend(OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT16U timeout, INT8U *err);

File Called from Code enabled by Version

OS_FLAG.C Task only OS_FLAG_EN V2.51

OSFlagPend() is used to have a task wait for a combination of conditions (i.e. events or bits) to be set (or
cleared) in an event flag group. You application can wait for ANY condition to be set (or cleared) or, ALL
conditions to be either set or cleared. If the events that the calling task desires are not available then, the calling task
will be blocked until the desired conditions are satisfied or, the specified timeout expires.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

flags is a bit pattern indicating which bit(s) (i.e. flags) you wish to check. The bits you want are specified by
setting the corresponding bits in flags.

wait_type specifies whether you want ALL bits to be set/cleared or ANY of the bits to be set/cleared. You can
specify the following argument:

OS_FLAG_WAIT_CLR_ALL You will check ALL bits in 'flags' to be clear (0)
OS_FLAG_WAIT_CLR_ANY You will check ANY bit in 'flags' to be clear (0)
OS_FLAG_WAIT_SET_ALL You will check ALL bits in 'flags' to be set (1)
OS_FLAG_WAIT_SET_ANY You will check ANY bit in 'flags' to be set (1)

You can also specify whether the flags will be ‘consumed’ by adding OS_FLAG_CONSUME to the
wait_type. For example, to wait for ANY flag in a group and then CLEAR the flags that satisfy the
condition, set wait_type to:

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err a pointer to an error code and can be:

OS_NO_ERR No error
OS_ERR_PEND_ISR You tried to call OSFlagPend from an ISR which is not allowed.
OS_ERR_EVENT_TYPE You are not pointing to an event flag group
OS_FLAG_ERR_WAIT_TYPE You didn't specify a proper 'wait_type' argument.
OS_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag handle.
OS_FLAG_ERR_NOT_RDY The desired flags you are waiting for are not available.
OS_TIMEOUT The flags were not available within the specified amount of time.

Returned Value

The value of the flags in the event flag group after they are consumed (if OS_FLAG_CONSUME is specified) or, the
state of the flags just before OSFlagPend() returns. OSFlagPend() returns 0 if a timeout occurs.

Notes/Warnings

1) The event flag group must be created before it’s used.

10

New since µC/OS-II V2.00

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAGS value;

 pdata = pdata;
 for (;;) {
 value = OSFlagPend(EngineStatus,
 ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,
 OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,
 10,
 &err);
 switch (err) {
 case OS_NO_ERR:
 /* Desired flags are available */
 break;

 case OS_TIMEOUT:
 /* The desired flags were NOT available before 10 ticks occurred */
 break;
 }
 .
 .
 }
}

 11

 New since µC/OS-II V2.00

OSFlagPost()
OS_FLAGS OSFlagPost(OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U opt, INT8U *err);

File Called from Code enabled by Version

OS_FLAG.C Task or ISR OS_FLAG_EN V2.51

You set or clear event flag bits by calling OSFlagPost(). The bits set or cleared are specified in a ‘bit mask’.
OSFlagPost() will ready each task that has it’s desired bits satisfied by this call. You can set or clear bits that
are already set or cleared.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

flags specifies which bits you want set or cleared. If opt (see below) is OS_FLAG_SET, each bit that is set in
'flags' will set the corresponding bit in the event flag group. e.g. to set bits 0, 4 and 5 you would set flags to
0x31 (note, bit 0 is least significant bit). If opt (see below) is OS_FLAG_CLR, each bit that is set in flags will
CLEAR the corresponding bit in the event flag group. e.g. to clear bits 0, 4 and 5 you would specify 'flags' as
0x31 (note, bit 0 is least significant bit).

opt indicates whether the flags will be set (OS_FLAG_SET) or cleared (OS_FLAG_CLR).

err is a pointer to an error code and can be:

 OS_NO_ERR The call was successfull
 OS_FLAG_INVALID_PGRP You passed a NULL pointer
 OS_ERR_EVENT_TYPE You are not pointing to an event flag group
 OS_FLAG_INVALID_OPT You specified an invalid option

Returned Value

The new value of the event flags.

Notes/Warnings

1) Event flag groups must be created before they are used.
2) The execution time of this function depends on the number of tasks waiting on the event flag group. However,

the execution time is deterministic.
3) The amount of time interrupts are DISABLED also depends on the number of tasks waiting on the event flag

group.

12

New since µC/OS-II V2.00

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatusFlags;

void TaskX (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSFlagPost(EngineStatusFlags, ENGINE_START, OS_FLAG_SET, &err);
 .
 .
 }
}

 13

 New since µC/OS-II V2.00

OSFlagQuery()
OS_FLAGS OSFlagQuery(OS_FLAG_GRP *pgrp, INT8U *err);

File Called from Code enabled by Version

OS_FLAG.C Task or ISR OS_FLAG_EN &&
OS_FLAG_QUERY_EN

V2.51

OSFlagQuery() is used to obtain the current value of the event flags in a group. At this time, this function does
NOT return the list of tasks waiting for the event flag group.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event flag group is
created (see OSFlagCreate()).

err is a pointer to an error code and can be:

 OS_NO_ERR The call was successfull
 OS_FLAG_INVALID_PGRP You passed a NULL pointer
 OS_ERR_EVENT_TYPE You are not pointing to an event flag group

Returned Value

The state of the flags in the event flag group.

Notes/Warnings

1) The event flag group to query must be created.
2) You can call this function from an ISR.

Example

In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
 OS_FLAGS flags;
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 flags = OSFlagQuery(EngineStatusFlags, &err);
 .
 .
 }
}

14

New since µC/OS-II V2.00

OSMboxDel()
OS_EVENT *OSMboxDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

File Called from Code enabled by Version

OS_MBOX.C Task OS_MBOX_EN and
OS_MBOX_DEL_EN

V2.04

OSMboxDel() is used to delete a message mailbox. This is a dangerous function to use because multiple tasks
could attempt to access a deleted mailbox. You should always use this function with great care. Generally
speaking, before you would delete a mailbox, you would first delete all the tasks that access the mailbox.

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is created (see
OSMboxCreate()).

opt specifies whether you want to delete the mailbox only if there are no pending tasks (OS_DEL_NO_PEND) or
whether you always want to delete the mailbox regardless of whether tasks are pending or not (OS_DEL_ALWAYS).
In this case, all pending task will be readied.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the mailbox was deleted.
OS_ERR_DEL_ISR if you attempted to delete the mailbox from an ISR
OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
OS_ERR_INVALID_OPT if you didn’t specify one of the two options mentioned above.
OS_ERR_PEVENT_NULL if there are no more OS_EVENT structures available.

Returned Value

A NULL pointer if the mailbox is deleted or pevent if the mailbox was not deleted. In the latter case, you would
need to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the mailbox.

Interrupts are disabled when pended tasks are readied. This means that interrupt latency depends on the number of
tasks that were waiting on the mailbox.

 15

 New since µC/OS-II V2.00

Example

OS_EVENT *DispMbox;

void Task (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 .
 .
 DispMbox = OSMboxDel(DispMbox, OS_DEL_ALWAYS, &err);
 .
 .
 }
}

16

New since µC/OS-II V2.00

OSMboxPostOpt()
INT8U OSMboxPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

File Called from Code enabled by Version

OS_MBOX.C Task or ISR OS_MBOX_EN and
OS_MBOX_POST_OPT_EN

V2.51

OSMboxPostOpt() is used to send a message to a task through a mailbox. A message is a pointer-sized variable
and its use is application specific. If a message is already in the mailbox, an error code is returned indicating that
the mailbox is full. OSMboxPostOpt() then immediately returns to its caller and the message is not placed in the
mailbox. If any task is waiting for a message at the mailbox, OSMboxPostOpt() allows you to either post the
message to the highest priority task waiting at the mailbox (opt set to OS_POST_OPT_NONE) or, to all tasks
waiting at the mailbox (opt is set to OS_POST_OPT_BROADCAST). In either case, scheduling will occur and if
any of the task that receives the message has a higher priority than the task that is posting the message then, the
higher priority task will be resumed and the sending task will be suspended. In other words, a context switch will
occur.

OSMboxPostOpt() works just like OSMboxPost() except that it allows you to post a message to MULTIPLE
tasks. In other words, it allows the message posted to be broadcast to ALL tasks waiting on the mailbox.
OSMboxPostOpt() can actually replace OSMboxPost() because it can emulate OSMboxPost().

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is created (see
OSMboxCreate()).

msg is the actual message sent to the task(s) msg is a pointer-sized variable and what msg points to is application
specific. You must never post a NULL pointer because this indicates that the mailbox is empty.

opt specifies whether you want to send the message to the highest priority task waiting at the mailbox (when opt
is set to OS_POST_OPT_NONE) or, to ALL tasks waiting at the mailbox (when opt is set to
OS_POST_OPT_BROADCAST).

Returned Value

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the message was sent.
OS_MBOX_FULL if the mailbox already contains a message. You can only send ONE

message at a time to a mailbox and thus, the message MUST be
consumed before you are allowed to send another one.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer.

 17

 New since µC/OS-II V2.00

Notes/Warnings

Mailboxes must be created before they are used.

You must NEVER post a NULL pointer to a mailbox because this indicates that the mailbox is empty.

If you need to use this function and want to reduce code space, you may disable code generation of
OSMboxPost() since OSMboxPostOpt() can emulate OSMboxPost().

The execution time of OSMboxPostOpt() depends on the number of tasks waiting on the mailbox if you set opt
to OS_POST_OPT_BROADCAST.

Example

OS_EVENT *CommMbox;
INT8U CommRxBuf[100];

void CommRxTask (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMboxPostOpt(CommMbox, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);
 .
 .
 }
}

18

New since µC/OS-II V2.00

OSMutexAccept()
INT8U OSMutexAccept(OS_EVENT *pevent, INT8U *err);

File Called from Code enabled by Version

OS_MUTEX.C Task OS_MUTEX_EN V2.04

OSMutexAccept() allows you to check to see if a resource is available. Unlike OSMutexPend(),
OSMutexAccept() does not suspend the calling task if the resource is not available.

Arguments

pevent is a pointer to the mutex that guards the resource. This pointer is returned to your application when the
mutex is created (see OSMutexCreate()).

err is a pointer to a variable used to hold an error code. OSMutexAccept() sets *err to one of the following:

OS_NO_ERR if the call was successful.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.
OS_ERR_PEND_ISR if you called OSMutexAccept() from an ISR.

Returned Value

If the mutex was available, OSMutexAccept() returns 1. If the mutex was owned by another task,
OSMutexAccept() returns 0.

Notes/Warnings

1) Mutexes must be created before they are used.
2) This function MUST NOT be called by an ISR.
3) If you acquire the mutex through OSMutexAccept(), you MUST call OSMutexPost() to release the

mutex when you are done with the resource.

 19

 New since µC/OS-II V2.00

Example

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 INT8U err;
 INT8U value;

 pdata = pdata;
 for (;;) {
 value = OSMutexAccept(DispMutex, &err);
 if (value == 1) {
 . /* Resource available, process */
 .
 } else {
 . /* Resource NOT available */
 .
 }
 .
 .
 }
}

20

New since µC/OS-II V2.00

OSMutexCreate()
OS_EVENT *OSMutexCreate(INT8U prio, INT8U *err);

File Called from Code enabled by Version

OS_MUTEX.C Task or startup code OS_MUTEX_EN V2.04

OSMutexCreate() is used to create and initialize a mutex. A mutex is used to gain exclusive access to a
resource.

Arguments

prio is the Priority Inheritance Priority (PIP) that will be used when a high priority task attempts to acquire the
mutex that is owned by a low priority task. In this case, the priority of the low priority task will be raised to the PIP
until the resource is released.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the mutex was created.
OS_PRIO_EXIST if a task at the specified priority inheritance priority already exist.
OS_PRIO_INVALID if you specified a priority with a higher number than

OS_LOWEST_PRIO.
OS_ERR_PEVENT_NULL if there are no more OS_EVENT structures available.
OS_ERR_CREATE_ISR if you attempted to create a mutex from an ISR.

Returned Value

A pointer to the event control block allocated to the mutex. If no event control block is available,
OSMutexCreate() will return a NULL pointer.

Notes/Warnings

1) Mutexes must be created before they are used.
2) You MUST make sure that prio has a higher priority than ANY of the tasks that WILL be using the mutex to
access the resource. For example, if 3 tasks of priority 20, 25 and 30 are going to use the mutex then, prio must
be a number LOWER than 20. In addition, there MUST NOT already be a task created at the specified priority.

Example

OS_EVENT *DispMutex;

void main (void)
{
 INT8U err;

 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 DispMutex = OSMutexCreate(20, &err); /* Create Display Mutex */
 .
 .
 OSStart(); /* Start Multitasking */
}

 21

 New since µC/OS-II V2.00

OSMutexDel()
OS_EVENT *OSMutexDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

File Called from Code enabled by Version

OS_MUTEX.C Task OS_MUTEX_EN and
OS_MUTEX_DEL_EN

V2.04

OSMutexDel() is used to delete a mutex. This is a dangerous function to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generally speaking, before
you would delete a mutex, you would first delete all the tasks that access the mutex.

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

opt specifies whether you want to delete the mutex only if there are no pending tasks (OS_DEL_NO_PEND) or
whether you always want to delete the mutex regardless of whether tasks are pending or not (OS_DEL_ALWAYS).
In this case, all pending task will be readied.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the mutex was deleted.
OS_ERR_DEL_ISR if you attempted to delete a mutex from an ISR.
OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.
OS_ERR_INVALID_OPT if you didn’t specify one of the two options mentioned above.
OS_ERR_TASK_WAITING if one or more task were waiting on the mutex and and you specified

OS_DEL_NO_PEND.
OS_ERR_PEVENT_NULL if there are no more OS_EVENT structures available.

Returned Value

A NULL pointer if the mutex is deleted or pevent if the mutex was not deleted. In the latter case, you would need
to examine the error code to determine the reason.

Notes/Warnings

1) You should use this call with care because other tasks may expect the presence of the mutex.

22

New since µC/OS-II V2.00

Example

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 .
 .
 DispMutex = OSMutexDel(DispMutex, OS_DEL_ALWAYS, &err);
 .
 .
 }
}

 23

 New since µC/OS-II V2.00

OSMutexPend()
void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

File Called from Code enabled by Version

OS_MUTEX.C Task only OS_MUTEX_EN V2.04

OSMutexPend() is used when a task desires to get exclusive access to a resource. If a task calls
OSMutexPend() and the mutex is available, then OSMutexPend() will give the mutex to the caller and return
to its caller. Note that nothing is actually given to the caller except for the fact that if the err is set to
OS_NO_ERR, the caller can assume that it owns the mutex. However, if the mutex is already owned by another
task, OSMutexPend() will place the calling task in the wait list for the mutex. The task will thus wait until the
task that owns the mutex releases the mutex and thus the resource or, the specified timeout expires. If the mutex is
signaled before the timeout expires, µC/OS-II will resume the highest priority task that is waiting for the mutex.
Note that if the mutex is owned by a lower priority task then OSMutexPend() will raise the priority of the task
that owns the mutext to the Priority Inheritance Priority (PIP) as specified when you created the mutex (see
OSMutexCreate()).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

timeout is used to allow the task to resume execution if the mutex is not signaled (i.e. posted to) within the
specified number of clock ticks. A timeout value of 0 indicates that the task desires to wait forever for the
mutex. The maximum timeout is 65535 clock ticks. The timeout value is not synchronized with the clock tick.
The timeout count starts being decremented on the next clock tick which could potentially occur immediately.

err is a pointer to a variable which will be used to hold an error code. OSMutexPend() sets *err to either:

OS_NO_ERR if the call was successful and the mutex was available.
OS_TIMEOUT if the mutex was not available within the specified timeout.
OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMutexPend().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_PEND_ISR if you attempted to acquire the mutex from an ISR.

Returned Value

NONE

Notes/Warnings

1) Mutexes must be created before they are used.
2) You shoud NOT suspend the task that owns the mutex, have the mutex owner wait on any other µC/OS-II

objects (i.e. semaphore, mailbox or queue) and, you should NOT delay the task that owns the mutex. In other
words, your code should hurry up and release the resource as soon as possible.

24

New since µC/OS-II V2.00

Example

OS_EVENT *DispMutex;

void DispTask (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 OSMutexPend(DispMutex, 0, &err);
 . /* The only way this task continues is if … */
 . /* … the mutex is available or signaled! */
 }
}

 25

 New since µC/OS-II V2.00

OSMutexPost()
INT8U OSMutexPost(OS_EVENT *pevent);

File Called from Code enabled by Version

OS_MUTEX.C Task OS_MUTEX_EN V2.04

A mutex is signaled (i.e. released) by calling OSMutexPost(). You would call this function only if you acquired
the mutex either by first calling OSMutexAccept() or OSMutexPend(). If the priority of the task that owns
the mutex has been raised when a higher priority task attempted to acquire the mutex then the original task priority
of the task will be restored. If one or more tasks are waiting for the mutex, the mutex is given to the highest priority
task waiting on the mutex. The scheduler is then called to determine if the awakened task is now the highest
priority task ready to run and if so, a context switch will be done to run the readied task. If no task is waiting for the
mutex, the mutex value is simply set to available (0xFF).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

Returned Value

OSMutexPost() returns one of these error codes:

OS_NO_ERR if the call was successful and the mutex released.
OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMutexPost().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_POST_ISR if you attempted to call OSMutexPost() from an ISR.
OS_ERR_NOT_MUTEX_OWNER if the task posting (i.e. signaling the mutex) doesn’t actually owns the

mutex.

Notes/Warnings

1) Mutexes must be created before they are used.
2) You cannot call this function from an ISR.

26

New since µC/OS-II V2.00

Example

OS_EVENT *DispMutex;

void TaskX (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMutexPost(DispMutex);
 switch (err) {
 case OS_NO_ERR: /* Mutex signaled */
 .
 .
 break;

 case OS_ERR_EVENT_TYPE:
 .
 .
 break;

 case OS_ERR_PEVENT_NULL:
 .
 .
 break;

 case OS_ERR_POST_ISR:
 .
 .
 break;

 }
 .
 .
 }
}

 27

 New since µC/OS-II V2.00

OSMutexQuery()
INT8U OSMutexQuery(OS_EVENT *pevent, OS_MUTEX_DATA *pdata);

File Called from Code enabled by Version

OS_MUTEX.C Task OS_MUTEX_EN &&
OS_MUTEX_QUERY_EN

V2.04

OSMutexQuery() is used to obtain run-time information about a mutex. Your application must allocate an
OS_MUTEX_DATA data structure which will be used to receive data from the event control block of the mutex.
OSMutexQuery() allows you to determine whether any task is waiting on the mutex, how many tasks are waiting
(by counting the number of 1s in the .OSEventTbl[] field, obtain the Priority Inheritance Priority (PIP) and
determine whether the mutex is available (1) or not (0). Note that the size of .OSEventTbl[] is established by
the #define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created (see
OSMutexCreate()).

pdata is a pointer to a data structure of type OS_MUTEX_DATA, which contains the following fields:

INT8U OSMutexPIP; /* The PIP of the mutex
*/
INT8U OSOwnerPrio; /* The priority of the mutex owner
*/
INT8U OSValue; /* The current mutex value, 1 means available, 0 means unavailable
*/
INT8U OSEventGrp; /* Copy of the mutex wait list
*/
INT8U OSEventTbl[OS_EVENT_TBL_SIZE];

Returned Value

OSMutexQuery() returns one of these error codes:

OS_NO_ERR if the call was successful.
OS_ERR_EVENT_TYPE if you didn’t pass a pointer to a mutex to OSMutexQuery().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_QUERY_ISR if you attempted to call OSMutexQuery() from an ISR.

Notes/Warnings

1) Mutexes must be created before they are used.
2) You cannot call this function from an ISR.

28

New since µC/OS-II V2.00

Example

In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 OS_MUTEX_DATA mutex_data;
 INT8U err;
 INT8U highest; /* Highest priority task waiting on mutex */
 INT8U x;
 INT8U y;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMutexQuery(DispMutex, &mutex_data);
 if (err == OS_NO_ERR) {
 if (mutex_data.OSEventGrp != 0x00) {
 y = OSUnMapTbl[mutex_data.OSEventGrp];
 x = OSUnMapTbl[mutex_data.OSEventTbl[y]];
 highest = (y << 3) + x;
 .
 .
 }
 }
 .
 .
 }
}

 29

 New since µC/OS-II V2.00

OSQDel()
OS_EVENT *OSQDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

File Called from Code enabled by Version

OS_Q.C Task OS_Q_EN and
OS_Q_DEL_EN

V2.04

OSQDel() is used to delete a message queue. This is a dangerous function to use because multiple tasks could
attempt to access a deleted queue. You should always use this function with great care. Generally speaking, before
you would delete a queue, you would first delete all the tasks that access the queue.

Arguments

pevent is a pointer to the queue. This pointer is returned to your application when the queue is created (see
OSQCreate()).

opt specifies whether you want to delete the queue only if there are no pending tasks (OS_DEL_NO_PEND) or
whether you always want to delete the queue regardless of whether tasks are pending or not (OS_DEL_ALWAYS).
In this case, all pending task will be readied.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the queue was deleted.
OS_ERR_DEL_ISR if you attempted to delete the queue from an ISR
OS_ERR_EVENT_TYPE if pevent is not pointing to a queue.
OS_ERR_INVALID_OPT if you didn’t specify one of the two options mentioned above.
OS_ERR_PEVENT_NULL if there are no more OS_EVENT structures available.

Returned Value

A NULL pointer if the queue is deleted or pevent if the queue was not deleted. In the latter case, you would need
to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the queue.

Interrupts are disabled when pended tasks are readied. This means that interrupt latency depends on the number of
tasks that were waiting on the queue.

30

New since µC/OS-II V2.00

Example

OS_EVENT *DispQ;

void Task (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 .
 .
 DispQ = OSQDel(DispQ, OS_DEL_ALWAYS, &err);
 .
 .
 }
}

 31

 New since µC/OS-II V2.00

OSQPostOpt()
INT8U OSQPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

File Called from Code enabled by Version

OS_Q.C Task or ISR OS_Q_EN and
OS_Q_POST_OPT_EN

V2.51

OSQPostOpt() is used to send a message to a task through a queue. A message is a pointer-sized variable and its
use is application specific. If the message queue is full, an error code is returned indicating that the queue is full.
OSQPostOpt() then immediately returns to its caller, and the message is not placed in the queue. If any task is
waiting for a message at the queue, OSQPostOpt() allows you to either post the message to the highest priority
task waiting at the queue (opt set to OS_POST_OPT_NONE) or, to all tasks waiting at the queue (opt is set to
OS_POST_OPT_BROADCAST). In either case, scheduling will occur and if any of the task that receives the
message has a higher priority than the task that is posting the message then, the higher priority task will be resumed
and the sending task will be suspended. In other words, a context switch will occur.

OSQPostOpt() emulates both OSQPost() and OSQPostFront(), and also allows you to post a message to
MULTIPLE tasks. In other words, it allows the message posted to be broadcast to ALL tasks waiting on the queue.
OSQPostOpt() can thus actually replace OSQPost() and OSQPostFront() because you specify the mode of
operation via an option argument, opt.

Arguments

pevent is a pointer to the queue. This pointer is returned to your application when the queue is created (see
OSQCreate()).

msg is the actual message sent to the task(s) msg is a pointer-sized variable and what msg points to is application
specific. You must never post a NULL pointer.

opt determines the type of POST performed:

 OS_POST_OPT_NONE POST to a single waiting task (Identical to OSQPost())
 OS_POST_OPT_BROADCAST POST to ALL tasks that are waiting on the queue
 OS_POST_OPT_FRONT POST as LIFO (Simulates OSQPostFront())

 Below is a list of ALL the possible combination of these flags:

1) OS_POST_OPT_NONE identical to OSQPost()

2) OS_POST_OPT_FRONT identical to OSQPostFront()

3) OS_POST_OPT_BROADCAST identical to OSQPost() but will broadcast msg to ALL waiting

tasks

4) OS_POST_OPT_FRONT + OS_POST_OPT_BROADCAST is identical to OSQPostFront()
except that will broadcast msg to ALL waiting tasks.

32

New since µC/OS-II V2.00

Returned Value

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the message was sent.
OS_Q_FULL if the queue can no longer accept messages because it is full.
OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer.

Notes/Warnings

Queues must be created before they are used.

You must NEVER post a NULL pointer to a queue.

If you need to use this function and want to reduce code space, you may disable code generation of OSQPost()
and OSQPostFront() since OSQPostOpt() can emulate OSQPost() and OSQPostFront().

The execution time of OSQPostOpt() depends on the number of tasks waiting on the queue if you set opt to
OS_POST_OPT_BROADCAST.

Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100];

void CommRxTask (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 .
 .
 err = OSQPostOpt(CommQ, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);
 .
 .
 }
}

 33

 New since µC/OS-II V2.00

OSSemDel()
OS_EVENT *OSSemDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

File Called from Code enabled by Version

OS_SEM.C Task OS_SEM_EN and
OS_SEM_DEL_EN

V2.04

OSSemDel() is used to delete a semaphore. This is a dangerous function to use because multiple tasks could
attempt to access a deleted semaphore. You should always use this function with great care. Generally speaking,
before you would delete a semaphore, you would first delete all the tasks that access the semaphore.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore is created
(see OSSemCreate()).

opt specifies whether you want to delete the semaphore only if there are no pending tasks (OS_DEL_NO_PEND) or
whether you always want to delete the semaphore regardless of whether tasks are pending or not
(OS_DEL_ALWAYS). In this case, all pending task will be readied.

err is a pointer to a variable which will be used to hold an error code. The error code can be one of the following:

OS_NO_ERR if the call was successful and the semaphore was deleted.
OS_ERR_DEL_ISR if you attempted to delete the semaphore from an ISR
OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.
OS_ERR_INVALID_OPT if you didn’t specify one of the two options mentioned above.
OS_ERR_PEVENT_NULL if there are no more OS_EVENT structures available.

Returned Value

A NULL pointer if the semaphore is deleted or pevent if the semaphore was not deleted. In the latter case, you
would need to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the semaphore.

Interrupts are disabled when pended tasks are readied. This means that interrupt latency depends on the number of
tasks that were waiting on the semaphore.

34

New since µC/OS-II V2.00

Example

OS_EVENT *DispSem;

void Task (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 .
 .
 DispSem = OSSemDel(DispSem, OS_DEL_ALWAYS, &err);
 .
 .
 }
}

 35

 New since µC/OS-II V2.00

36

References

µC/OS-II, The Real-Time Kernel
Jean J. Labrosse
R&D Technical Books, 1998
ISBN 0-87930-543-6

Contacts

Micriµm, Inc.
949 Crestview Circle
Weston, FL 33327
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

R&D Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631
(785) 841-2624 (FAX)
WEB: http://www.rdbooks.com
e-mail: rdorders@rdbooks.com

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.rdbooks.com/
mailto:rdorders@rdbooks.com

	© Copyright 2002, Micriµm, Inc.
	New Features and Services
	since
	µC/OS-II V2.00
	References
	Contacts

